Pythagorean Theorem and its Converse	Name		Pou
Mr. West, Geometry – Osborne High School:	Block:	Date:	2
	Pythagorean	Theorem is	$a^2 + b^2 - a^2$
1.0			a + b - C-
I. Use the Pythagorean Theorem to find the the	nird side of eacl	h triangle	
(Given: "a" and "b" are legs and "c" is to $a = 12, b = 16$			/12
122+162= C2 92+62		3. $a = \sqrt{13}$, $b = \sqrt{13}$	-(V/2)2=C2
144+256=400 - 3 81+62	/		2 = C2 (Fin)
C2 =400 C= \$400 (=20) -81 6	2 - 81 6 6 24	((3)	35=C2 (V3520
4. $b = 35$, $c = 37$ 5. $a = 8$, $c = 12$	-1600	6. $a = 3\sqrt{2}$, c	
$9^2 + 35^2 = 37^2$ $8^2 + 6^2 = 12$ $6^4 + 6^2 = 14$	1 /=	BVZ)2+6	- 1 - 110
$9^{2} + 1225 = 1369$ $64 + 6^{2} = 14$ $6^{2} = 14$	6 10413	18+62	=36 b=V18 ==18 (b=3V
7. N 8 1	0	9.	7
5 10 52+X2=102	572+642=X2	7= /	72+72=X2
V2.75	43 249 + 40 %	x X	49+49 = X2
1 V-V33	7345=X2	VI	98=X2
X=5\(\frac{13}{3}\)	V /345 - A	(1	98 = X
		×	IVa-N
10. X X +8 = 102 11. 24	18 2424 18	12.	1212 112
10 X2+64=100	576+274=	×2	Y21 V2=142
8 10 1 x2 = 36 ×	900 - X2		$2x^2 = 14^2$
(X=6)	(30=X)	V	1×2=196
V CA-G		K	2 2
			×2-98
II. (The two shorter sides must add up (sum) to more tha	an the longer sig	10)
vynich of the following numbers can be the	ne lengths of side	es of a triangle?	If the
lengths can make a triangle, which type? S		ORK to justify the	e answer.
	$7^2 + 12^2 = 193$ $19^2 = 361$	3. 6, 8, 10	62+82 = 100
9+12=21 162=256 7+12=19	3612193	6+8=14	102 = 100
21216V 256>225 19 > 13V	Obtuse	17700	(M. D)
4. 34, 21, 24 $2 ^{2}+2 ^{2}=10 7 5$. 11, 7, 18		6. 5, 8, 7	52+72=74
21+24:45 342 = 1,156 11+7=18		5+7=12	82 = 64
(45) 34 V Obtuse Wota D.		(12/8/	Acute)
	32+15=234	9. 14, 21, 6	
12+9=21 3+15=18	172 = 289	6+14=20	
15221 (18217V)	Obtuse)	20221	1
Nota		Notal	

III. Use the Pythagorean Theorem to solve these problems. $a^2 + b^2 = c^2$ Draw pictures to illustrate the problem. 1. A square has a diagonal with a length of 20 cm. What is the measure of each side?

2. A 25-foot ladder is leaning against a building. The foot of the ladder is 15 feet from the base of the building. How high is the top of the ladder along the building?

$$\chi^{2} + 15^{2} = 25^{2}$$
 $\chi^{2} + 225 = 625$
 $\chi^{2} = 400$
 $\chi^{2} = 400$

3. Ashley travels 42 miles due east, then 19 miles due south. How far is Ashley from the starting point?

$$42^{2} + 19^{2} = x^{2}$$

 $1764 + 361 = x^{2}$
 $2125 = x^{2}$
 $\sqrt{2125} = x$ $5\sqrt{85} = x$

4. What is the length of the altitude of an equilateral triangle if a side is 12 cm

$$6^{2}+\chi^{2}=12^{2}$$

 $36+\chi^{2}=144$
 $\chi^{2}=108$

5. A pole was 15 feet tall before a storm broke it. If there is still 3 feet of the pole standing upright and the rest is toppled over at an angle, how far is the "top" of the pole from the base?

$$\chi^{2} + 3^{2} = 12^{2}$$
 $\chi^{2} + 9 = 144$
 $\chi^{2} = 135$

6. Sam, who is 6 feet tall, is flying a kite. He has let out 1125 meters of string which he stakes into the ground. The stake is 75 meters from a tree which the kite is directly above. * Who cares how fall Sam is? It doesn't matter since he How high is the kite?

